
© 2024 Dafulai Electronics

CAN Bus Analyzer/Simulator for LabVIEW

User Manual

CAN Bus Analyzer/Simulator for LabVIEW2

© 2024 Dafulai Electronics

Table of Contents

I Introduce 3

II How to use CAN bus Controller Sub VI? 4

III Block Diagrams Nodes 8

... 81 OpenCANCtrl sub-VI

... 112 TransmitData Sub VI

... 133 TransmitRTR Sub-VI

... 144 ReceiveCAN Sub-VI

... 165 getCANCommStatus Sub-VI

... 176 sendTxWatchdogValue Sub-VI

... 187 CloseCANCtrl Sub-VI

IV Notice 19

Introduce 3

© 2024 Dafulai Electronics

1 Introduce

Our CAN Bus Analyzer/Simulator Hardware can be used under LabVVIEW platform (LabView 2019 or

higher) for windows OS.

We call Analyzer/Simulator CAN BUS Controller in LabVIEW.

Let us introduce CAN Bus Controller function.

Our CAN Bus controller can transmit/Receive standard or/and extended CAN Bus data and RTR

frames as general CAN bus node.

And furthermore, transmitting CAN Bus Frame can be synchronized by special CAN BUS transmitting

frame or receiving frame. If sync is enabled, CAN Bus controller only can transmit CAN Bus frame

when it receives or transmits this special CAN BUS frame. This special CAN BUS frame is called

"Sync frame"

Another feature is that our CAN Bus Controller has Watchdog function.

Watchdog purpose is for getting communication fault information.

Received Watchdog (Call it RxWatchdog) is for itself to know whether CAN BUS communication OK

or not.

Transmitted Watchdog (Call it TxWatchdog) is for other CAN bus nodes to know whether CAN BUS

communication OK or not.

TxWatchdog CAN Bus frame send out periodically automatically by hardware, You don't need to send

by calling block diagram node.

Similarly, if "Sync frame" is "Transmit frame", "Sync frame" send out periodically automatically by

hardware, You don't need to send by calling block diagram node.

RxWatchdog has 3 kinds of work mode:

1. Work mode 0: RxWatchdog initial value is 0. RxWatchdog is free running up-counter each ms.

RxWatchdog value will return 0 if we receive Watchdog CAN Bus frame, and value is different from

previous received value. When RxWatchdog value is over RxWatchdog Period, it will keep the

Rxwatchdog value and communication fault will occur.

2. Work mode 1: RxWatchdog initial value is 0. RxWatchdog is free running up-counter each ms.

When it arrive at period value, it will keep it, and one communication fault will occur. RxWatchdog

Data packet (received by CAN Bus) can change counter value directly to avoid communication fault.

(Not like mode0, in mode 0, it is clear counter when received watchdog value is different from

previous one)

3 Work mode 2: RxWatchdog initial value is equal to period. RxWatchdog is free running down-

counter each ms. When it arrive at 0, it will keep 0 and communication fault will occur. RxWatchdog

Data packet (received by CAN Bus) can change counter value directly to avoid communication fault.

TxWatchdog has 4 kinds of work modes (TxWatchdog CAN Bus frame send out periodically

CAN Bus Analyzer/Simulator for LabVIEW4

© 2024 Dafulai Electronics

automatically by hardware for all modes):

1. Work mode 0: TxWatchdog value is decided by calling sendTxWatchdogValue node.
2. Work mode 1: TxWatchdog value increases 1 every TxWatchdog's period automatically. You don't

need to call sendTxWatchdogValue node
3. Work mode 2: TxWatchdog value decreases 1 every TxWatchdog's period automatically. You

don't need to call sendTxWatchdogValue node
4. Work mode 3: TxWatchdog will have no any value, its data packet length is zero. It is used for

CANOpen Sync frame

Notes: "Sync frame " can use "RxWatchdog/TxWatchdog frame" to replace, and in this situation, the
CAN ID setting of sync frame will be ignored.

2 How to use CAN bus Controller Sub VI?

Please follow steps below:

· Step1 Download CAN bus Controller Sub VI from click CANBusControl.zip
· Step2 unzip CANBusControl.zip to your any destination in your computer.

You will see Folder : "Any Folder you like" \ CANBusControl
· Step3 In your application VI, Right click in Block diagram, context menu popup below:

http://dafulaielectronics.com/CANBusControl.zip

How to use CAN bus Controller Sub VI? 5

© 2024 Dafulai Electronics

Fig.1 Open CAN Bun Controller Sub-VI

When you click context menu item "Select a VI..." , the dialog below pops up:

CAN Bus Analyzer/Simulator for LabVIEW6

© 2024 Dafulai Electronics

Fig2 Select CAN bus Controller block diagram node

Please select CAN bus Controller block diagram node you want as Fig.2. And clik "OK" button. For
example, you want to use OpenCANCtrl node as Fig.2, you will see this node in your block diagram
below:

Fig.3 OpenCANCtrl Node

If you put Cursor on "Question mark" of top right corner and click, and then put your mouser on
your node as Fig 4 below, and click, you will see help about this node.

How to use CAN bus Controller Sub VI? 7

© 2024 Dafulai Electronics

Fig.4 Node help

After you click "Detailed help" in Fig.4, you will see Fig.5 for detailed help and simple example for
using this node in Fig.6:

CAN Bus Analyzer/Simulator for LabVIEW8

© 2024 Dafulai Electronics

Fig.6 Detailed help

You can add many other nodes you want in this way.

3 Block Diagrams Nodes

We will introduce every block diagram node for CAN Bus controller in the following sections.

3.1 OpenCANCtrl sub-VI

This is for configuration of CAN Bus Controller.

You will set the following items below from this Block diagram node:

· COM port which used for CAN Bus Controller

· CAN Bus baud rate, and terminator enabled or not

· CAN BUS filters and masks, Sync CAN Bus frame, Watchdog.

· Enable CAN Bus and output reference for other CAN BUS blocks use.

Notes: This block diagram node only can be called once, and at last you must call closeCANCtril node

to release resource when you don't use it..

Block Diagrams Nodes 9

© 2024 Dafulai Electronics

Input Terminals:

This block diagram node has totally 25 input terminals

All Terminals have default value. If not connected, it will use default value.

Let us describe all input terminals below;

1. PortName: This is String type, It is "COMx" (x=1, 2, 3, ...) which denotes which COM Port you use

for CAN Bus Controller. Default value is "COM1"

2. BaudRate: This is CAN BUS Baud rate , Data type is I32. Its value range is 25000 (25K) to

1000000 (1M). When BaudRate<50000, 1500000/BaudRate must be integer. If not, BaudRate will

be rounded to keep this automatically. When BaudRate>=50000, 3000000/BaudRate must be

integer. If not, BaudRate will be rounded to keep this automatically. Default value is 250000 bps

3. Filters: This is CAN bus receiver Filters. Data type is 1-D array of U32. Array size is 16 which

denotes 16 filters. The bit30 (Bit0 is LSb, Bit31 is MSb) denotes whether we uses 29 bits of

extended frame. If its bit30 is 1 and related-mask bit30 is also 1, CAN Bus will receive extended

frame for this filter. The 1st filter to the 8th filter use the 1st Mask, The 9th filter to the 12th filter

use the 2nd Mask,The 13th filter to the 16th filter use the 3rd Mask. When Bit of Mask is 1, CAN

bus controller will only receive CAN ID which bit value is equal to bit value of filter. When Bit of

Mask is 0, CAN Bus receiver don't care the bit value of CAN ID . All Filters default value is 0, All

masks default value is 0. It means CAN Bus Controller only receive 11 bits standard frame in

default situation. You should pay more attention to RxWatchdog and "Rx Sync" when they use 29

bits of extended frame, It will cause no Sync or No watchdog received if you do not set up any filters

and masks.

4. Masks: This is for masking CAN bus receiver Filter. Data type is 1-D array of U32. Array size is 3

which denotes 3 masks. The bit30 (Bit0 is LSb, Bit31 is MSb) denotes whether we uses 29 bits of

extended frame. If you want to receive extended frame, you must set Bit30 of both Mask and Filter

to 1. The 1st Mask is for the 1st to 8th Filters, the 2nd Mask is for the 9th to 12th Filters,the 3rd

Mask is for the 13th to 16th Filters. The CAN Bus controller only receive CAN ID which meets the

formula: Filter "Bit-wise And" Mask = "Received CANID" "Bit-wise And" Mask. All masks

default value is 0.

5. EchoOn: This is for setting "Echo Enabled". Data type is Boolean. True means CAN BUS

Controller can receive what it sends out if it meets filter condition. False means CAN BUS Controller

cannot receive what it sends out. This input only be effective to CAN BUS controller which supports

both "Analyzer" and "Simulator" function. Default value is False.

6. Terminator: This is for enable 120ohms of CAN Bus terminator. Data type is Boolean. True means

Enable. Default value is False.

7. Sync: This is for controlling when to send out CAN Bus frame. Data type is Boolean. True means

that CAN BUS controller only transmits CAN frame when it receives "Sync frame" or when after it

send out "Sync frame". Default value is False.

8. SyncByTx: This is for choosing Tx or Rx as Sync frame. Data type is Boolean. True means "Sync

CAN Bus Analyzer/Simulator for LabVIEW10

© 2024 Dafulai Electronics

frame" is transmit frame, Default value is False.

9. CANID4Sync: This is CAN ID for "Sync frame". Data type is U32. The bit30 (Bit0 is LSb, Bit31 is

MSb) denotes whether we use 29 bits of extended frame. 1 is extended frame. Default value is

decimal 123. Notes: If you use watchdog frame as "Sync frame", this parameter will be ignored.

10.SyncUseWatchdog: This will force Sync to use watchdog frame to replace. CANID4Sync will be

ignored. Data type is Boolean. Default value is False.

11.SyncTxPeriod: This is transmitting period of "Tx Sync frame" in ms if we use Tx Sync frame. Data

type is U16. Min=2, Max=65535. Default value=500

12.RxWatchdogEnable: This will enable RxWatchdog. Data type is Boolean. True means that we

enable received Watchdog. when it is enabled, you can call node "getCANCommStatus" to know

whether CAN BUS communication fault occurs. Default value is False.

13.CANID4RxWatchdog: This is CAN ID for "RxWatchdog frame". Data type is U32. The bit30 (Bit0

is LSb, Bit31 is MSb) denotes whether we use 29 bits of extended frame. 1 is extended frame.

Default value is decimal 234. Notes: If RxWatchdogEnable is False, this parameter will be

ignored.

14.RxWatchdogDLC: This is the length of RxWatchdog frame's data in bytes. Data type is U8. Default

value is 8. Notes: this is not RxWatchdog data length. It is entire data frame's length in byte.

15.RxWatchdogMode: This is RxWatchdogMode. Data type is U8. Default value is 0.

16.RxWatchdogStartPos: This is RxWatchdog value's start position (1-based) in RxWatchdog data

frame, Data type is U8. Default value is 1.

17.RxWatchdogLen: This is RxWatchdog value's byte quantity. Data type is U8. Default value is 1.

The valid value is 1, 2, 4, 8.

18.RxWatchdogPeriod: This is RxWatchdog period. It is used for judgment of CAN BUS

communication fault. Data type is U16. Min=2, Max=65535. Default value=500

19.TxWatchdogEnable: This will enable TxWatchdog. Data type is Boolean. True means that we

enable TxWatchdog. when it is enabled, CAN Bus controller will send out TxWachdog frame

cyclically by hardware without LabView any action. Default value is False.

20.CANID4TxWatchdog: This is CAN ID for "TxWatchdog frame". Data type is U32. The bit30 (Bit0 is

LSb, Bit31 is MSb) denotes whether we use 29 bits of extended frame. 1 is extended frame. Default

value is decimal 345. Notes: If TxWatchdogEnable is False, this parameter will be ignored.

21.TxWatchdogDLC: This is the length of TxWatchdog frame's data in bytes. Data type is U8. Default

value is 8. Notes: this is not TxWatchdog data length. It is entire data frame's length in byte.

22.TxWatchdogMode: This is TxWatchdogMode. Data type is U8. Default value is 0.

23.TxWatchdogStartPos: This is TxWatchdog value's start position (1-based) in TxWatchdog data

frame, Data type is U8. Default value is 1.

24.TxWatchdogLen: This is TxWatchdog value's byte quantity. Data type is U8. Default value is 1.

The valid value is 1, 2, 4, 8.

25.TxWatchdogPeriod: This is TxWatchdog period. It is to notify hardware how often to transmit

TxWatchdog frame . Data type is U16. Min=2, Max=65535. Default value=500

Block Diagrams Nodes 11

© 2024 Dafulai Electronics

Output Terminals:

This block diagram node has totally 2 output terminals

Let us describe all output terminals below;

1. CANCtrl: This is CAN bus controller 's reference output. The other CAN bus controller's node will

use it as input to know CAN bus controller.

2. error out: This contains error information. This output provides standard error out functionality

A simple example:

In the following example, CAN BUS Controller will transmit CAN data frame with CANID=88, DLC=1

and Data=121 once every 800ms. And if you switch stop button to true, it will exit loop and exit

program

3.2 TransmitData Sub VI

This is for transmitting Data frame.

You will transmit one or multiple data frames by calling this node:

CAN Bus Analyzer/Simulator for LabVIEW12

© 2024 Dafulai Electronics

Input Terminals:

This block diagram node has totally 5 input terminals

Let us describe all input terminals below;

1. CANCtrl: This is CAN bus controller 's reference intput. It denotes CAN Bus Controller object

instance.

2. error in: error in describes error conditions that occur before this node runs. This input provides

standard error in functionality.

3. DLC: This is 1-D array of U8. Array size denotes how many frames do you want to transmit. The

element is Data byte quantity for each frame. Element value range is 0 to 8.

4. CANID: This is 1-D array of U32. Array size denotes how many frames do you want to transmit. So

CANID size must be equal to DLC size. The element is CAN ID for each frame. The bit30 (Bit0 is

LSb, Bit31 is MSb) denotes whether we use 29 bits of extended frame. 1 is extended frame.

5. Data: This is 2-D array of U8. The row number of array is how many frames do you want to transmit.

So row quantity must be equal to DLC size. The element of i row j column denotes one data byte for

data j of frame i.

Output Terminals:

This block diagram node has totally 3 output terminals

Let us describe all output terminals below;

1. CANCtrl: This is CAN bus controller 's reference output. The other CAN bus controller's node will

use it as input to know CAN bus controller.

2. error out: This contains error information. This output provides standard error out functionality

3. Success: This is for telling caller whether transmit success. Data type is Boolean. True means

success.

A simple example:

In the following example, CAN BUS Controller will transmit CAN data frame with CANID=88, DLC=1

and Data=121 once every 800ms. And if you switch stop button to true, it will exit loop and exit

program

Block Diagrams Nodes 13

© 2024 Dafulai Electronics

3.3 TransmitRTR Sub-VI

This is for transmitting Remote frame.

You will transmit one or multiple Remote frames by calling this node:

Input Terminals:

This block diagram node has totally 3 input terminals

Let us describe all input terminals below;

1. CANCtrl: This is CAN bus controller 's reference input. It denotes CAN Bus Controller object

instance.

2. error in: error in describes error conditions that occur before this node runs. This input provides

standard error in functionality.

3. CANID: This is 1-D array of U32. Array size denotes how many frames do you want to transmit. So

CANID size must be equal to DLC size. The element is CAN ID for each frame. The bit30 (Bit0 is

LSb, Bit31 is MSb) denotes whether we use 29 bits of extended frame. 1 is extended frame.

Output Terminals:

CAN Bus Analyzer/Simulator for LabVIEW14

© 2024 Dafulai Electronics

This block diagram node has totally 3 output terminals

Let us describe all output terminals below;

1. CANCtrl: This is CAN bus controller 's reference output. The other CAN bus controller's node will

use it as input to know CAN bus controller.

2. error out: This contains error information. This output provides standard error out functionality

3. Success: This is for telling caller whether transmit success. Data type is Boolean. True means

success.

A simple example:

In the following example, CAN BUS Controller will transmit 2 CAN Remote frames with CANID=99 and

100 once every 800ms. And it will exit loop after 100 times (80 seconds) and exit program

3.4 ReceiveCAN Sub-VI

This is for receiving CAN Bus frame.

This is non-block node. You will receive Frame information if it gets CAN Bus frame coming (meet filter

and mask) or receive Empty if no can bus frame coming or filtered out by filter and mask when calling

this node:

Notes: System uses FIFO to keep CAN BUS received frames. So even though you didn't call this ReceiveCAN Node on time,

you can still get received frame information later. FIFO size is 2047 frames. If buffered content less than 2048, you won't lose

data packets.

Output Terminals:

This block diagram node has totally 4 output terminals

Block Diagrams Nodes 15

© 2024 Dafulai Electronics

Let us describe all output terminals below;

1. CANID: This is CAN ID received. Data type is 1-D array of U32. Array size denotes how many

frames we received. Element of array is CAN ID we received. The bit30 (Bit0 is LSb, Bit31 is MSb)

denotes whether we receive 29 bits of extended frame. 1 is extended frame. The bit29 denotes

whether we receive Remote Request frame, 1 is RTR frame. If we didn't receive any frame or

received frame filtered out by Filter and mask, this array will be empty. That is to say, Array size is

0. Array index denotes frame number.

2. DLC: This is Data byte quantity for received frame. Data type is 1-D array of U8. The valid

elements are 0 to 8. Array index denotes frame number, so array size is exact that same as size of

CANID.

3. Data: This is Data byte for received frame. Data type is 2-D array of U8. The row number of array is

how many frames do you receive. So row quantity must be equal to DLC size. The element of i row

j column denotes one data byte for data j of frame i.

4. RTR: This is for telling caller whether received frame is Remote frame. Data type is 1-D array of

Boolean. Array index denotes frame number, so array size is exact that same as size of CANID.

The element value True denotes Remote frame.

A simple example:

In the following example, CAN BUS Controller will receive CAN data frames once every 500ms. And if

you switch stop button to true, it will exit loop and exit program

CAN Bus Analyzer/Simulator for LabVIEW16

© 2024 Dafulai Electronics

3.5 getCANCommStatus Sub-VI

This is to know whether CAN BUS Communication fault when RxWatchdog enabled.

Notes: This is only used when RxWatchdog enabled

Output Terminals:

This block diagram node has totally 1 output terminal

Let us describe all output terminals below;

1. CANCommunicationErrorSuccess: This is for telling caller whether CAN Bus communication fault

occured. Data type is Boolean. True means Fault.

Block Diagrams Nodes 17

© 2024 Dafulai Electronics

This node is very simple. We do not give example. Communication state is changeable, so you

should call this node frequently.

3.6 sendTxWatchdogValue Sub-VI

This is for sending TxWatchdog value when TxWatchdog mode 0.

Hardware sends out TxWatchdog frame automatically. You only need to tell hardware what watchdog

value is when mode 0.

For TxWatchdog mode 1 and 2 and 3, you don't need to tell hardware what watchdog value is because

Hardware decide watchdog value by itself.

You will tell hardware what txWatchdog value is by calling this node:

Notes: This is only used when TxWatchdog enabled and TxWatchdog mode 0 is used

Input Terminals:

This block diagram node has totally 3 input terminals

Let us describe all input terminals below;

1. CANCtrl: This is CAN bus controller 's reference intput. It denotes CAN Bus Controller object

instance.

2. error in: error in describes error conditions that occur before this node runs. This input provides

standard error in functionality.

3. TxWDValue: This is TxWatchdog Value. Data type is U64. You need to set value according to

TxWatchdogLen parameter (The data byte quantity of TxWatchdog Value)

Output Terminals:

This block diagram node has totally 3 output terminals

Let us describe all output terminals below;

1. CANCtrl: This is CAN bus controller 's reference output. The other CAN bus controller's node will

use it as input to know CAN bus controller.

2. error out: This contains error information. This output provides standard error out functionality

3. Success: This is for telling caller whether transmit success. Data type is Boolean. True means

success.

CAN Bus Analyzer/Simulator for LabVIEW18

© 2024 Dafulai Electronics

A simple example:

In the following example, TxWatchdog enabled and mode=0. CAN BUS Controller will send

TxWatchdog Value = Loop value i once every 500ms. And if you switch stop button to true, it will exit

loop and exit program

3.7 CloseCANCtrl Sub-VI

This is for close CAN Bus Controller.

You will release all resource occupied by CAN BUS Controller and disable CAN Bus:

Input Terminals:

This block diagram node has totally 2 input terminals

Let us describe all input terminals below;

Block Diagrams Nodes 19

© 2024 Dafulai Electronics

1. CANCtrl: This is CAN bus controller 's reference intput. It denotes CAN Bus Controller object

instance.

2. error in: error in describes error conditions that occur before this node runs. This input provides

standard error in functionality.

A simple example:

In the following example, CAN BUS Controller will transmit CAN data frame with CANID=88, DLC=1

and Data=121 once every 800ms. And if you switch stop button to true, it will exit loop and exit

program

4 Notice

IMPORTANT NOTICE

The information in this manual is subject to change without notice.

Dafulai’s products are not authorized for use as critical components in life support devices or systems. Life

support devices or systems are those which are intended to support or sustain life and whose failure to perform

can be reasonably expected to result in a significant injury or death to the user. Critical components are those

whose failure to perform can be reasonably expected to cause failure of a life support device or system or affect

its safety or effectiveness.

COPYRIGHT

CAN Bus Analyzer/Simulator for LabVIEW20

© 2024 Dafulai Electronics

The product may not be duplicated without authorization. Dafulai Company holds all copyright. Unauthorized

duplication will be subject to penalty.

	Introduce
	How to use CAN bus Controller Sub VI?
	Block Diagrams Nodes
	OpenCANCtrl sub-VI
	TransmitData Sub VI
	TransmitRTR Sub-VI
	ReceiveCAN Sub-VI
	getCANCommStatus Sub-VI
	sendTxWatchdogValue Sub-VI
	CloseCANCtrl Sub-VI

	Notice

