CAN Bus Analyzer/Simulator for LabVIEW

User Manual

© 2024 Dafulai Electronics

CAN Bus Analyzer / Simulator

DafulaiElectronics.com

Made in Canada

RX

2 CAN Bus Analyzer/Simulator for LabVIEW

Table of Contents

| Introduce 3
I How to use CAN bus Controller Sub VI? 4
Il Block Diagrams Nodes 8
1 OPENCANCLIT SUD-V ...ttt e ettt e e e e e e e s e s b e beeeeaaeeeeaannnnes 8
2 TranSMUItDATA SUD V... ..ttt e e e et e e e sa e e s sa e e s et s e nabaes 11
T I = T Ey a1 R IR ST U] o Y 13
R S YoT YAV Z 1O AN AV IR U] o LY A RN 14
5 getCANCOMMSTALUS SUD-V .ottt e e e e e e et e e e e e e e e an 16
6 sendTXWatchdogValue SUD-Vi. ... 17
A O (o F=T=T0F AN\ N[1 g IR o AV A 18
IV Notice 19

© 2024 Dafulai Electronics

Introduce 3

1 Introduce

Our CAN Bus Analyzer/Simulator Hardware can be used under LabVVIEW platform (LabView 2019 or
higher) for windows OS.

We call Analyzer/Simulator CAN BUS Controller in LabVIEW.

Let us introduce CAN Bus Controller function.

Our CAN Bus controller can transmit/Receive standard or/and extended CAN Bus data and RTR
frames as general CAN bus node.

And furthermore, transmitting CAN Bus Frame can be synchronized by special CAN BUS transmitting
frame or receiving frame. If sync is enabled, CAN Bus controller only can transmit CAN Bus frame
when it receives or transmits this special CAN BUS frame. This special CAN BUS frame is called
"Sync frame"

Another feature is that our CAN Bus Controller has Watchdog function.

Watchdog purpose is for getting communication fault information.

Received Watchdog (Call it RxWatchdog) is for itself to know whether CAN BUS communication OK
or not.

Transmitted Watchdog (Call it TxWatchdog) is for other CAN bus nodes to know whether CAN BUS
communication OK or not.

TxWatchdog CAN Bus frame send out periodically automatically by hardware, You don't need to send
by calling block diagram node.

Similarly, if "Sync frame" is "Transmit frame", "Sync frame" send out periodically automatically by

hardware, You don't need to send by calling block diagram node.

RxWatchdog has 3 kinds of work mode:

1. Work mode 0: RxWatchdog initial value is 0. RxWatchdog is free running up-counter each ms.
RxWatchdog value will return 0 if we receive Watchdog CAN Bus frame, and value is different from
previous received value. When RxWatchdog value is over RxWatchdog Period, it will keep the
Rxwatchdog value and communication fault will occur.

2. Work mode 1: RxWatchdog initial value is 0. RxWatchdog is free running up-counter each ms.
When it arrive at period value, it will keep it, and one communication fault will occur. RxWatchdog
Data packet (received by CAN Bus) can change counter value directly to avoid communication fault.
(Not like mode0, in mode 0, it is clear counter when received watchdog value is different from
previous one)

3 Work mode 2: RxWatchdog initial value is equal to period. RxWatchdog is free running down-
counter each ms. When it arrive at 0, it will keep 0 and communication fault will occur. RxWatchdog

Data packet (received by CAN Bus) can change counter value directly to avoid communication fault.

TxWatchdog has 4 kinds of work modes (TxWatchdog CAN Bus frame send out periodically

© 2024 Dafulai Electronics

CAN Bus Analyzer/Simulator for LabVIEW

automatically by hardware for all modes):

1. Work mode 0: TxWatchdog value is decided by calling sendTxWatchdogValue node.

2. Work mode 1: TxWatchdog value increases 1 every TxWatchdog's period automatically. You don't
need to call sendTxWatchdogValue node

3. Work mode 2: TxWatchdog value decreases 1 every TxWatchdog's period automatically. You
don't need to call sendTxWatchdogValue node

4. Work mode 3: TxWatchdog will have no any value, its data packet length is zero. It is used for
CANOpen Sync frame

Notes: "Sync frame " can use "RxWatchdog/TxWatchdog frame" to replace, and in this situation, the
CAN ID setting of sync frame will be ignored.

How to use CAN bus Controller Sub VI?

Please follow steps below:

e Stepl Download CAN bus Controller Sub VI from click CANBusControl.zip
e Step2 unzip CANBusControl.zip to your any destination in your computer.
You will see Folder : "Any Folder you like"\ CANBusControl
e Step3 In your application VI, Right click in Block diagram, context menu popup below:

© 2024 Dafulai Electronics

http://dafulaielectronics.com/CANBusControl.zip

How to use CAN bus Controller Sub VI?

File Edit Vi R 1
I 421 Functions Q, Search !»
Programming p Bov Tav CHv tag
el i Do
Structures Array Cluster, Class, &
Variant
[z &=
= D)
Numeric Boolean String
% (7]
Comparison Waveform Collection
& o
e
File /O Timing Dialog & User
Interface
® ¥
@-9 S
Synchronization Graphics & Application
Sound Control
=Y
LS
Report
Generation
Measurement /O »
Instrument I/0 »
Mathematics 3
Signal Processing
Data Communication
[— s Click here to select CAN
CANBus.vproj) Connectivity BUS Controller sub-VI
Control & Simulation
Express
Addons

| Select a V...

Fig.1 Open CAN Bun Controller Sub-VI

When you click context menu item "Select a VI..." , the dialog below pops up:

© 2024 Dafulai Electronics

CAN Bus Analyzer/Simulator for LabVIEW

[+] Select the VI to Open X
« v <« CANbusLabView_Publish > CANCtrlVI il y)
usabtiew upish 2 4 CANBusControl.zip
Organize * New folder =~ OO0 O
"
—_ Changdi » Name Date modified Type Size
© Musi - =) CloseCANCtrl.vi 2024-04-24 11:54 AM LabVIEW Instrume... 22KB
usic
u Vid » =) EventdReceive.vi 2024-04-23 11:45 AM LabVIEW Instrume... 30KB
ideos
=) EventdReportError.vi -23 841 AM LabVIEW Instrume 15KB
CANCtrlVI
o &), getCANCommStatus.vi 2024-04-24 12:07 PM LabVIEW Instrume... 18 KB
ANCtrlVI
-, OpenCANCtrl.vi 2024-04-26 9:58 AM LabVIEW Instrume... 91 KB
CANBUS_LabVie
File name: | OpenCANCtrl.vi -v‘ All LabVIEW Files (*.vi:*.cth* vit: ~

Fig2 Select CAN bus Controller block diagram node

Please select CAN bus Controller block diagram node you want as Fig.2. And clik "OK" button. For
example, you want to use OpenCANCtrl node as Fig.2, you will see this node in your block diagram

below:

E Untitled 1 Block Diagram on CANBus.lvproj/My C... — O X
File Edit View Project Operate Tools Window Help %I
S & N Y 2 varg .+ |15ptApplicatior«), P 1

OFEN

[CANBus.lvproj/My Computer
Fig.3 OpenCANCtrl Node

If you put Cursor on "Question mark" of top right corner and click, and then put your mouser on
your node as Fig 4 below, and click, you will see help about this node.

© 2024 Dafulai Electronics

How to use CAN bus Controller Sub VI? 7

[¥] Untitled 1 Block Diagram * - (=] X -
Context Help
File Edit View Project Operate Tools Window Help

ey e Us

S® @ N G W vaB o[15ptApplication Font ~ | o Fav D~ 2§ +f Search Iwamhdn_g.DL‘c
Terminator

EchoOn

CANID4TxWatchdog

CANID4RxWatchdog
CANID4Syne
RxWatchdogEnable
PortName

BaudRate

Filters

Masks

Sync

SyncByTx
SyncUseWatchdog
TxWatchdogEnable
SyncTxPeriod
RxWatchdogMode
RxWatchdogDLC
RxWatchdogStartPos
RxWatchdoglen

R WatchdogPeriod
TWatchdogPeriod

1 click Question Mark
2 Click "Detailed help

CANCtrl
error out

() ReWatchdogNggtPos (unsigned byte [2-bit integer (0 to 255

Fig.4 Node help

After you click "Detailed help" in Fig.4, you will see Fig.5 for detailed help and simple example for
using this node in Fig.6:

% CAN Bus Analyzer = O X

R T o) B

Hide Back Forward Home P Options

TXVWalCnuogFPeErnod
Cortorts | Swwch| Favoes TxWatchdogPeriod T ~
:| OpenCANCHI subvI

Input Terminals:

This block diagram node has totally 25 input terminals

All Terminals have default value. If not connected, it will use default value.

Let us describe all input terminals below;

1. PortName: This is String type, It is "COMxX" (x=1, 2, 3, ...) which denotes which COM Port you use for CAN Bus
Controller. Default value is "COM1"

2. BaudRate: This is CAN BUS Baud rate , Data type is 132. Its value range is 25000 (25K) to 1000000 (1M). When
BaudRate<50000, 1500000/BaudRate must be integer. If not, BaudRate will be rounded to keep this automatically
When BaudRate>=50000, 3000000/BaudRate must be integer. If not, BaudRate will be rounded to keep this
automatically. Default value is 250000 bps

3. Filters: This is CAN bus receiver Filters. Data type is 1-D array of U32. Array size is 16 which denotes 16 filters.
The bit30 (Bit0 is LSb, Bit31 is MSb) denotes whether we uses 29 bits of extended frame. If its bit30 is 1 and
related-mask bit30 is also 1, CAN Bus will receive extended frame for this filter. The 1st filter to the 8th filter use the
1st Mask, The 9th filter to the 12th filter use the 2nd Mask,The 13th filter to the 16th filter use the 3rd Mask. When
Bit of Mask is 1, CAN bus controller will only receive CAN ID which bit value is equal to bit value of filter. When Bit of
Mask is 0. CAN Bus receiver don't care the bit value of CAN ID . All Filters default value is 0, All masks default
value is 0. It means CAN Bus Controller only receive 11 bits standard frame in default situation. You should pay
more attention to RxWatchdog and "Rx Sync” when they use 29 bits of extended frame, It will cause no Sync or No
watchdog received if you do not set up any filters and masks.

4. Masks: This is for masking CAN bus receiver Filter. Data type is 1-D array of U32. Array size is 3 which denotes 3
masks. The bit30 (Bit0 is LSb, Bit31 is MSb) denotes whether we uses 29 bits of extended frame. If you want to
receive extended frame, you must set Bit30 of both Mask and Filter to 1. The 1st Mask is for the 1st to 8th Filters,
the 2nd Mask is for the 9th to 12th Filters the 3rd Mask is for the 13th to 16th Filters. The CAN Bus controller only
receive CAN ID which meets the formula: Filter "Bit-wise And” Mask = "Received CANID" "Bit-wise And"
Mask. All masks default value is 0.

5. EGRBOR: This is for setting "Echo Enabled”. Data type is Boolean. True means CAN BUS Controller can receive
what it sends out if it meets filter condition. False means CAN BUS Controller cannot receive what it sends out. This
input only be effective to CAN BUS controller which supports both "Analyzer” and "Simulator” function. Default value
is False.

6. Tefminator This is for enable 120ohms of CAN Bus terminator. Data type is Boolean. True means Enable. Default
value is False.

7. BYf€: This is for controlling when to send out CAN Bus frame. Data type is Boolean. True means that CAN BUS Vv
controller only transmits CAN frame when it receives "Sync frame” or when after it send out "Sync frame”. Default

© 2024 Dafulai Electronics

8 CAN Bus Analyzer/Simulator for LabVIEW

You can add many other nodes you want in this way.

3 Block Diagrams Nodes

Fig.6 Detailed help

We will introduce every block diagram node for CAN Bus controller in the following sections.

3.1 OpenCANCtrl sub-VI

This is for configuration of CAN Bus Controller.

You will set the following items below from this Block diagram node:

e COM port which used for CAN Bus Controller

o CAN Bus baud rate, and terminator enabled or not

e CAN BUS filters and masks, Sync CAN Bus frame, Watchdog.

e Enable CAN Bus and output reference for other CAN BUS blocks use.

Notes: This block diagram node only can be called once, and at last you must call closeCANCtril node

to release resource when you don't use it..

OpenCANCtrLvi

TxWatchdoglLen
TxWatchdogStartPos
TxWatchdogDLC
TxWatchdogMode
Terminator

EchoOn
CANID4TxWatchdog
CANID4RxWatchdog
CANID4Sync
RxWatchdogEnable
PortName

BaudRate

Filters

Masks

Sync

SyncByTx
SyncUseWatchdog
TxWatchdogEnable
SyncTxPeriod
RxWatchdogMode
RxWatchdogDLC
RxWatchdogStartPos
RxWatchdoglen
RxWatchdogPeriod
TxWatchdogPeriod

CANCtrl
error out

© 2024 Dafulai Electronics

Block Diagrams Nodes 9

Input Terminals:

This block diagram node has totally 25 input terminals

All Terminals have default value. If not connected, it will use default value.

Let us describe all input terminals below;

1. PortName: This is String type, Itis "COMX" (x=1, 2, 3, ...) which denotes which COM Port you use
for CAN Bus Controller. Default value is "COM1"

2. BaudRate: This is CAN BUS Baud rate , Data type is 132. Its value range is 25000 (25K) to
1000000 (1M). When BaudRate<50000, 1500000/BaudRate must be integer. If not, BaudRate will
be rounded to keep this automatically. When BaudRate>=50000, 3000000/BaudRate must be
integer. If not, BaudRate will be rounded to keep this automatically. Default value is 250000 bps

3. Filters: This is CAN bus receiver Filters. Data type is 1-D array of U32. Array size is 16 which
denotes 16 filters. The bit30 (Bit0 is LSb, Bit31 is MSb) denotes whether we uses 29 bits of
extended frame. If its bit30 is 1 and related-mask bit30 is also 1, CAN Bus will receive extended
frame for this filter. The 1st filter to the 8th filter use the 1st Mask, The 9th filter to the 12th filter
use the 2nd Mask,The 13th filter to the 16th filter use the 3rd Mask. When Bit of Mask is 1, CAN
bus controller will only receive CAN ID which bit value is equal to bit value of filter. When Bit of
Mask is 0, CAN Bus receiver don't care the bit value of CAN ID . All Filters default value is 0, All
masks default value is 0. It means CAN Bus Controller only receive 11 bits standard frame in
default situation. You should pay more attention to RxWatchdog and "Rx Sync" when they use 29
bits of extended frame, It will cause no Sync or No watchdog received if you do not set up any filters
and masks.

4. Masks: This is for masking CAN bus receiver Filter. Data type is 1-D array of U32. Array size is 3
which denotes 3 masks. The bit30 (BitO is LSb, Bit31 is MSb) denotes whether we uses 29 bits of
extended frame. If you want to receive extended frame, you must set Bit30 of both Mask and Filter
to 1. The 1st Mask is for the 1st to 8th Filters, the 2nd Mask is for the 9th to 12th Filters,the 3rd
Mask is for the 13th to 16th Filters. The CAN Bus controller only receive CAN ID which meets the
formula: Filter "Bit-wise And" Mask = "Received CANID" "Bit-wise And" Mask. All masks
default value is 0.

5. EchoOn: This is for setting "Echo Enabled". Data type is Boolean. True means CAN BUS
Controller can receive what it sends out if it meets filter condition. False means CAN BUS Controller
cannot receive what it sends out. This input only be effective to CAN BUS controller which supports
both "Analyzer" and "Simulator" function. Default value is False.

6. Terminator: This is for enable 120ohms of CAN Bus terminator. Data type is Boolean. True means
Enable. Default value is False.

7. 8yne: This is for controlling when to send out CAN Bus frame. Data type is Boolean. True means
that CAN BUS controller only transmits CAN frame when it receives "Sync frame" or when after it
send out "Sync frame". Default value is False.

8. SyncByTXx: This is for choosing Tx or Rx as Sync frame. Data type is Boolean. True means "Sync

© 2024 Dafulai Electronics

10

CAN Bus Analyzer/Simulator for LabVIEW

frame" is transmit frame, Default value is False.

9. CANID4Sync: This is CAN ID for "Sync frame". Data type is U32. The bit30 (BitO is LSb, Bit31 is
MSb) denotes whether we use 29 bits of extended frame. 1 is extended frame. Default value is
decimal 123. Notes: If you use watchdog frame as "Sync frame", this parameter will be ignored.

10.SyncUseWatchdog: This will force Sync to use watchdog frame to replace. CANID4Sync will be
ignored. Data type is Boolean. Default value is False.

11.SyncTxPeriod: This is transmitting period of "Tx Sync frame" in ms if we use Tx Sync frame. Data
type is U16. Min=2, Max=65535. Default value=500

12 . RxWatchdogEnable: This will enable RxWatchdog. Data type is Boolean. True means that we
enable received Watchdog. when it is enabled, you can call node "getCANCommStatus" to know
whether CAN BUS communication fault occurs. Default value is False.

13.CANID4RxWatchdog: This is CAN ID for "RxWatchdog frame". Data type is U32. The bit30 (BitO
is LSb, Bit31 is MSb) denotes whether we use 29 bits of extended frame. 1 is extended frame.
Default value is decimal 234. Notes: If RxWatchdogEnable is False, this parameter will be
ignored.

14.RxWatchdogDLC: This is the length of RxWatchdog frame's data in bytes. Data type is U8. Default
value is 8. Notes: this is not RxWatchdog data length. It is entire data frame's length in byte.

15.RxWatchdogMode: This is RxWatchdogMode. Data type is U8. Default value is 0.

16.RxWatchdogStartPos: This is RxWatchdog value's start position (1-based) in RxWatchdog data
frame, Data type is U8. Default value is 1.

17.RxWatchdogLen: This is RxWatchdog value's byte quantity. Data type is U8. Default value is 1.
The valid value is 1, 2, 4, 8.

18.RxWatchdogPeriod: This is RxWatchdog period. It is used for judgment of CAN BUS
communication fault. Data type is U16. Min=2, Max=65535. Default value=500

19.TxWatchdogEnable: This will enable TxWatchdog. Data type is Boolean. True means that we
enable TxWatchdog. when it is enabled, CAN Bus controller will send out TxWachdog frame
cyclically by hardware without LabView any action. Default value is False.

20.CANID4TxWatchdog: This is CAN ID for "TxWatchdog frame". Data type is U32. The bit30 (BitO is
LSb, Bit31 is MSb) denotes whether we use 29 bits of extended frame. 1 is extended frame. Default
value is decimal 345. Notes: If TxWatchdogEnable is False, this parameter will be ignored.

21.TxWatchdogDLC: This is the length of TxWatchdog frame's data in bytes. Data type is U8. Default
value is 8. Notes: this is not TxXWatchdog data length. It is entire data frame's length in byte.

22.TxWatchdogMode: This is TxWatchdogMode. Data type is U8. Default value is O.

23.TxWatchdogStartPos: This is TxWatchdog value's start position (1-based) in TxWatchdog data
frame, Data type is U8. Default value is 1.

24. TxWatchdogLen: This is TxWatchdog value's byte quantity. Data type is U8. Default value is 1.
The valid value is 1, 2, 4, 8.

25.TxWatchdogPeriod: This is TxWatchdog period. It is to notify hardware how often to transmit
TxWatchdog frame . Data type is U16. Min=2, Max=65535. Default value=500

© 2024 Dafulai Electronics

Block Diagrams Nodes 11

Output Terminals:

This block diagram node has totally 2 output terminals

Let us describe all output terminals below;

1. CANCIl: This is CAN bus controller 's reference output. The other CAN bus controller's node will
use it as input to know CAN bus controller.

2. error out: This contains error information. This output provides standard error out functionality

A simple example:

In the following example, CAN BUS Controller will transmit CAN data frame with CANID=88, DLC=1
and Data=121 once every 800ms. And if you switch stop button to true, it will exit loop and exit
program

ata

0 [I[r21
PortName 0 | T

Ic oM1 } OPEN n.:._yx <

& CANID

HELEE] ©

3.2 TransmitData Sub VI

This is for transmitting Data frame.

You will transmit one or multiple data frames by calling this node:

© 2024 Dafulai Electronics

12

CAN Bus Analyzer/Simulator for LabVIEW

Data S—
CANCtrl in - Joarm CANCtrl out
errorin —I—='j ¥ "% error out
CANID I ‘e SuCCESS

DLC

Input Terminals:

This block diagram node has totally 5 input terminals

Let us describe all input terminals below;

1.

CANCIrl: This is CAN bus controller 's reference intput. It denotes CAN Bus Controller object
instance.

. error in: error in describes error conditions that occur before this node runs. This input provides

standard error in functionality.

. DLC: This is 1-D array of U8. Array size denotes how many frames do you want to transmit. The

element is Data byte quantity for each frame. Element value range is 0 to 8.

. CANID: This is 1-D array of U32. Array size denotes how many frames do you want to transmit. So

CANID size must be equal to DLC size. The elementis CAN ID for each frame. The bit30 (Bit0 is
LSbh, Bit31 is MSh) denotes whether we use 29 bits of extended frame. 1 is extended frame.

. Data: This is 2-D array of U8. The row number of array is how many frames do you want to transmit.

So row quantity must be equal to DLC size. The element of i row j column denotes one data byte for
data j of frame i.

Output Terminals:

This block diagram node has totally 3 output terminals

Let us describe all output terminals below;

1.

2.
3.

CANCIrl: This is CAN bus controller 's reference output. The other CAN bus controller's node will
use it as input to know CAN bus controller.

error out: This contains error information. This output provides standard error out functionality
Success: This is for telling caller whether transmit success. Data type is Boolean. True means

Success.

A simple example:
In the following example, CAN BUS Controller will transmit CAN data frame with CANID=88, DLC=1
and Data=121 once every 800ms. And if you switch stop button to true, it will exit loop and exit

program

© 2024 Dafulai Electronics

Block Diagrams Nodes 13

PortName
CoM1

OFEN

"]
-+
="}

HELEE] ©
—
(%)
—

CLOSE

DATTH

3.3 TransmitRTR Sub-VI

This is for transmitting Remote frame.

You will transmit one or multiple Remote frames by calling this node:

CANCtrl in

RTR T
i

CANCtrl out

error in =4

. B=error out

canip—

- Success

Input Terminals:

This block diagram node has totally 3 input terminals

Let us describe all input terminals below;
1. GANCIl: This is CAN bus controller 's reference input. It denotes CAN Bus Controller object

instance.

2. error in: error in describes error conditions that occur before this node runs. This input provides

standard error in functionality.

3. CANID: This is 1-D array of U32. Array size denotes how many frames do you want to transmit. So
CANID size must be equal to DLC size. The elementis CAN ID for each frame. The bit30 (BitO is
LSb, Bit31 is MSb) denotes whether we use 29 bits of extended frame. 1 is extended frame.

Output Terminals:

© 2024 Dafulai Electronics

14 CAN Bus Analyzer/Simulator for LabVIEW
This block diagram node has totally 3 output terminals
Let us describe all output terminals below;
1. CANCIrl: This is CAN bus controller 's reference output. The other CAN bus controller's node will
use it as input to know CAN bus controller.
2. error out: This contains error information. This output provides standard error out functionality
3. Success: This is for telling caller whether transmit success. Data type is Boolean. True means
success.
A simple example:
In the following example, CAN BUS Controller will transmit 2 CAN Remote frames with CANID=99 and
100 once every 800ms. And it will exit loop after 100 times (80 seconds) and exit program
100} " T
g2
PortName prcprp
<@ CANID "} Success
Ho_J[ee
100 TF
u [a]
3.4 ReceiveCAN Sub-VI

This is for receiving CAN Bus frame.

This is non-block node. You will receive Frame information if it gets CAN Bus frame coming (meet filter
and mask) or receive Empty if no can bus frame coming or filtered out by filter and mask when calling
this node:

Notes: System uses FIFO to keep CAN BUS received frames. So even though you didn't call this Receive CAN Node on time,
you can still get received frame information later. FIFO size is 2047 frames. If buffered content less than 2048, you won't lose
data packets.

Output Terminals:

This block diagram node has totally 4 output terminals

© 2024 Dafulai Electronics

Block Diagrams Nodes 15

Let us describe all output terminals below;

1. CANID: This is CAN ID received. Data type is 1-D array of U32. Array size denotes how many
frames we received. Element of array is CAN ID we received. The bit30 (BitO is LSb, Bit31 is MSb)
denotes whether we receive 29 bits of extended frame. 1 is extended frame. The bit29 denotes
whether we receive Remote Request frame, 1 is RTR frame. If we didn't receive any frame or
received frame filtered out by Filter and mask, this array will be empty. That is to say, Array size is
0. Array index denotes frame number.

2. DLC: This is Data byte quantity for received frame. Data type is 1-D array of U8. The valid
elements are 0 to 8. Array index denotes frame number, so array size is exact that same as size of
CANID.

3. Data: This is Data byte for received frame. Data type is 2-D array of U8. The row number of array is
how many frames do you receive. So row quantity must be equal to DLC size. The element of i row
j column denotes one data byte for data j of frame i.

4. RTR: This is for telling caller whether received frame is Remote frame. Data type is 1-D array of
Boolean. Array index denotes frame number, so array size is exact that same as size of CANID.

The element value True denotes Remote frame.

A simple example:
In the following example, CAN BUS Controller will receive CAN data frames once every 500ms. And if
you switch stop button to true, it will exit loop and exit program

© 2024 Dafulai Electronics

16

CAN Bus Analyzer/Simulator for LabVIEW

3.5

PortName

ICOM1|l

OFEH

getCANCommStatus Sub-VI

CLOSE

This is to know whether CAN BUS Communication fault when RxWatchdog enabled.

ERROFR

Wx

Notes: This is only used when RxWatchdog enabled

- CANCommunicationError

Output Terminals:

This block diagram node has totally 1 output terminal

Let us describe all output terminals below;

1. CANCommunicationErrorsuccess: This is for telling caller whether CAN Bus communication fault

occured. Data type is Boolean. True means Fault.

© 2024 Dafulai Electronics

Block Diagrams Nodes 17

This node is very simple. We do not give example. Communication state is changeable, so you

should call this node frequently.

3.6 sendTxWatchdogValue Sub-VI

This is for sending TxWatchdog value when TxWatchdog mode 0.

Hardware sends out TxWatchdog frame automatically. You only need to tell hardware what watchdog
value is when mode 0.

For TxWatchdog mode 1 and 2 and 3, you don't need to tell hardware what watchdog value is because

Hardware decide watchdog value by itself.

You will tell hardware what txWatchdog value is by calling this node:

CANCtrl in woy CANCtrl out
error in == b4 ®=error out
TxWDValue Success

Notes: This is only used when TxWatchdog enabled and TxWatchdog mode 0 is used

Input Terminals:

This block diagram node has totally 3 input terminals

Let us describe all input terminals below;

1. CANCIrl: This is CAN bus controller 's reference intput. It denotes CAN Bus Controller object
instance.

2. error in: error in describes error conditions that occur before this node runs. This input provides
standard error in functionality.

3. TxWDValue: This is TxWatchdog Value. Data type is U64. You need to set value according to
TxWatchdoglLen parameter (The data byte quantity of TxWatchdog Value)

Output Terminals:

This block diagram node has totally 3 output terminals

Let us describe all output terminals below;

1. CANCIrl: This is CAN bus controller 's reference output. The other CAN bus controller's node will
use it as input to know CAN bus controller.

2. error out: This contains error information. This output provides standard error out functionality

3. Success: This is for telling caller whether transmit success. Data type is Boolean. True means

Success.

© 2024 Dafulai Electronics

18 CAN Bus Analyzer/Simulator for LabVIEW

A simple example:

In the following example, TxWatchdog enabled and mode=0. CAN BUS Controller will send
TxWatchdog Value = Loop value i once every 500ms. And if you switch stop button to true, it will exit
loop and exit program

CANID4TxWatchdog

=
PortName T

WOV 2
I COM1 I OFEN & ®

TxWatchdogEnable |
@ .. §

TxWatchdogPeriod

[500]

TxWatchdogMode e —
o}
TxWatchdogDLC

TxWatchdogStartPos
[

TxWatchdoglen

[
CloseCANCtrl Sub-VI

This is for close CAN Bus Controller.

You will release all resource occupied by CAN BUS Controller and disable CAN Bus:

CLOSE

CANCtrl in
EITOr in sy

Input Terminals:
This block diagram node has totally 2 input terminals
Let us describe all input terminals below;

© 2024 Dafulai Electronics

Block Diagrams Nodes 19

1. CANCHrl: This is CAN bus controller 's reference intput. It denotes CAN Bus Controller object

instance.
2. error in: error in describes error conditions that occur before this node runs. This input provides

standard error in functionality.

A simple example:
In the following example, CAN BUS Controller will transmit CAN data frame with CANID=88, DLC=1
and Data=121 once every 800ms. And if you switch stop button to true, it will exit loop and exit

program
PortName o
Com1 e &
4 Notice
IMPORTANT NOTICE

The information in this manual is subject to change without notice.

Dafulai’s products are not authorized for use as critical components in life support devices or systems. Life
support devices or systems are those which are intended to support or sustain life and whose failure to perform
can be reasonably expected to result in a significant injury or death to the user. Critical components are those
whose failure to perform can be reasonably expected to cause failure of a life support device or system or affect

its safety or effectiveness.

COPYRIGHT

© 2024 Dafulai Electronics

20

CAN Bus Analyzer/Simulator for LabVIEW

The product may not be duplicated without authorization. Dafulai Company holds all copyright. Unauthorized

duplication will be subject to penalty.

© 2024 Dafulai Electronics

	Introduce
	How to use CAN bus Controller Sub VI?
	Block Diagrams Nodes
	OpenCANCtrl sub-VI
	TransmitData Sub VI
	TransmitRTR Sub-VI
	ReceiveCAN Sub-VI
	getCANCommStatus Sub-VI
	sendTxWatchdogValue Sub-VI
	CloseCANCtrl Sub-VI

	Notice

